

### CHEM1128-EXAM 2 REVIEW

By Q-Center Deep Shikha Srivastava 03/26/2025

## 1. Calculate the solubility (in g/L) of CaF<sub>2</sub> in water from the known solubility product constant (3.4 X 10<sup>-11</sup>).

Given, CaF2(S) = Cartisiq) + 2F(aq)  $\begin{array}{c}
I \\
C \\
E
\end{array}$   $\begin{array}{c}
0 \\
+s \\
-s
\end{array}$   $\begin{array}{c}
0 \\
+2s \\
-2s
\end{array}$  $K_{sp} = [(a^{2+j}] [F^{-j^2}]$   $K_{sp} = [s] [2s]^2$  $3.4 \times 10^{-11} = 45^{3}$ =) 5 = 2.0 × 10<sup>-4</sup> mol of caFz in 1 L of solution.  $In g|L => S = 2.0 \times 10^{-4} \frac{mol}{L} \times \frac{78.07g}{Imol CaF_2}$ S = 0.0156 g|L|

# 2. The measured solubility of MgF<sub>2</sub> at 25°C is 2.6 X 10<sup>-4</sup> mol/L. Calculate the $K_{sp}$ for MgF<sub>2</sub>.

$$MgF_{2}(s) = Mg'(aq) + 2F'(aq)$$
  
2.6x10<sup>-4</sup> mol of MgF<sub>2</sub> dissolves.  
1 mol MgF<sub>2</sub> splits to give 1 mol Mg<sup>2+</sup> and 2 mol F<sup>-</sup>.  
Equilibrium concentration,  $EMg^{2+}J = 2.6 \times 10^{-4} M$   
 $EF^{-}J = 2 \times (2.6 \times 10^{-4})$   
 $= 5.2 \times 10^{-4} M$   
 $Ksp = EMg^{2+}JEF^{-}J^{2}$   
 $= E2.6 \times 10^{-4}JE5.2 \times 10^{-4}J^{2} = [7.0 \times 10^{-11}]$ 

3. How many grams of Silver Chromate can you dissolve in water to make one liter of solution? ( $K_{sp} = 1 \times 10^{-12}$ )

Ag2 CrOy (S) = 2Ag taq) + CrOy2 (aq)  $K_{sp} = [Ag^{+}]^{2} [CrOy^{2}]$  $= [2S]^2 [S]$ If Solubility of Ag2CrOy=S, then it forms 25 moles of Agt and s moles of Croy?.  $K_{sp} = [2s]^2 [s]$ 1 × 10<sup>-12</sup> = 4s<sup>3</sup> 6×10-5M = 5 This means that  $6 \times 10^{-5}$  moles of  $Ag_2(roy can be dissolved)$ in enough water to make one liter of solution.  $\frac{6 \times 10^{-5} \text{ mol}}{1 L} \times \frac{331 \cdot 7g}{1 \text{ mol}} \frac{Ag_2(roy)}{2} = 2 \times 10^{-2} \frac{Ag_2(roy)}{2} \frac{1}{L}$ 

## 4. What mass of ZnS ( $K_{sp} = 2.5 \times 10^{-22}$ ) will dissolve in 300mL of 0.050M Zn(NO<sub>3</sub>)<sub>2</sub>?



5. A solution containing 0.020M Fluoride ions is added to a solution in which the original concentration of Barium ions is 1.0 X 10<sup>-4</sup> M. a) Will a precipitate form?

$$\frac{Solum}{\&}: BaF_2(S) \implies Ba^{2+}(aq) + 2F^{-}(aq)$$

$$Q = [Ba^{2+}] [F^{-}]^2$$

$$Q = [I \times 10^{-4}] [2 \times 10^{2}]^2 = 4.0 \times 10^{-8}$$

$$K_{Sp} = 1.8 \times 10^{-7}$$
Since,  $K_{Sp} > Q = 2$  [No precipitation.]

5. A solution containing 0.020M Fluoride ions is added to a solution in which the original concentration of Barium ions is 1.0 X 10<sup>-4</sup> M. b)What concentration of Fluoride ion is needed to get the saturated solution? Solun: Saturated solution =) Q = Kup

We calculate [F] in the Ksp expression by substituting Values for the Ksp of  $BaF_2$  and writing in the original  $[Ba^{2+}]$  as equilibrium concentration. Ksp =  $[Ba^{2+}] L F^{-}J^{2}$  $1.8 \times 10^{-7} = (1.0 \times 10^{-4}) (F^{-1})^{2}$  $[F^{-}]^{2} = 1.8 \times 10^{-7} / 1.0 \times 10^{-4})$ ) [F-] = 4.2x10-2M] If the initial [F-] = 4.2x10<sup>2</sup> and initial [Ba<sup>2+</sup>] = 1.0x10<sup>-4</sup> we get the saturated solution.

5. A solution containing 0.020M Fluoride ions is added to a solution in which the original concentration of Barium ions is 1.0 X 10<sup>-4</sup> M. c)What concentration of Fluoride ion gives a precipitate?

Solun: Any solution with EF-J > 4.2 × 10<sup>2</sup>ra gives ppt. Because then Q > Ksp.

6. A solution is prepared by mixing 100mL of 1.0 X 10<sup>-2</sup>M Pb(NO<sub>3</sub>)<sub>2</sub> and 100mL of 1.0 X 10<sup>-3</sup>M NaF. Will PbF<sub>2</sub> (s) precipitate ( $K_{sp} = 4 \times 10^{-8}$ )?



# 7. A solution contains 0.02M Mg<sup>2+</sup> and 0.02 M Sr<sup>2+</sup>. Sufficient carbonate is added so that the carbonate ion concentration is 2 X 10<sup>-7</sup>M. Will a precipitate form and so, what is it?

$$\frac{o(u^{n})}{Mg(0_{3})} = CMg^{2}f [(0_{3}^{2}J)] = CO^{2}f CO^{2}J = CO^{2}f CO^{2}f CO^{2}J = CO^{2}f CO^{2}f CO^{2}f CO^{2}f = CO^{2}f = CO^{2}f CO^{2}f = CO^{2$$

8. A solution consists of 0.10 M MgCl<sub>2</sub> and 0.10 M ZnCl<sub>2</sub>. To separate the two cations from each other, solid NaOH is added. The volume of the solution does not change. Which salt will precipitate?

$$\frac{Svlut^{n}}{Mg(0H)_{2}} = Mg^{2+} + 20H^{-}$$

$$Mg(0H)_{2} = Mg^{2+} + 20H^{-}$$

$$K_{SP} = [Mg^{2+}][OH^{-}]^{2}$$

$$K_{SP} = [Zn^{2+}][OH^{-}]^{2}$$

Small amount of NaOH is required to precipitate Zn2+. So, Zn(OH)2 precipitates first.

## 9. Write the overall equation equation and calculate K for the reaction in which Ca(OH)<sub>2</sub>. is dissolved in HNO<sub>3</sub>. $K_{sn} = 4 \times 10^{-6}$ and $K_w = 1 \times 10^{-14}$ .

Solution:  

$$\begin{array}{l}
\textcircled{0} - (a(0H)_{2}(s) \rightleftharpoons (a^{2}+(aq)+20H^{2}(aq)) \quad K_{sp} = K_{1} \\
\textcircled{0} - flip and double it (multiply by 2) \\
\qquad 2H^{\dagger}(aq) + 2CH^{-}(aq) \rightleftharpoons 2H_{2}O(L) \left(\frac{1}{K_{w}}\right)^{2} = K_{2} \\
\qquad Add \textcircled{0} and \textcircled{0}, \\
\qquad (a(0H)_{2}(s) + 2H^{\dagger}(aq) \rightleftharpoons 2H_{2}O + Ca^{2+}(aq)) \\
\qquad K = K_{L} * K_{2} \\
\qquad = K_{sp} * \left(\frac{1}{K_{w}}\right)^{2} \\
\qquad = (4 \times 10^{-6}) \left(\frac{1}{1 \times 10^{-14}}\right)^{2}
\end{array}$$

10. Cadmium(II) oxalate,  $CdC_2O_4$  has a  $K_{sp} = 1.5 \times 10^{-8}$ . Cadmium ions readily combine with ammonia to form the complex ion  $Cd(NH_3)^{2+}$  ( $K_f = 2.8 \times 10^7$ ). Calculate the molar solubility of  $CdC_2O_4$  in 0.010 M NH<sub>3</sub>.

Solution:  

$$Cd C_{2} O_{4} (s) = Cd^{2+}(a_{q}) + (zO_{4}^{2-}(a_{q}))$$

$$Cd C_{2} O_{4} (s) + 4 NH_{3} (a_{q}) = Cd (NH_{3})_{4}^{2+} (a_{q})$$

$$Cd C_{2} O_{4} (s) + 4 NH_{3} (a_{q}) = Cd (NH_{3})_{4}^{2+} (a_{q}) + (zO_{4}^{2-}(a_{q}))$$

$$K = \sum (cd (NH_{3})_{4}^{2+} \int (C_{2}O_{4}^{2-}) \int (1 - 5 \times 10^{3}) \int K = NH_{3} \int 4^{3}$$

$$K = K_{f} + K_{sp} = (2 - 8 \times 10^{2}) (1 - 5 \times 10^{3}) \int K = 0 - 42$$

$$For \ 1 \mod (Cd C_{2} O_{4} = 1 \mod (C_{2}O_{4}^{2-}) = 1 \mod q) \int (Cd (NH_{3})_{4}^{2+} dx)$$

$$S = \sum (C_{2}O_{4}^{2-}) = \sum (Cd (NH_{3})_{4}^{2+} dx)$$

$$S = \sum (C_{2}O_{4}^{2-}) = \sum (Cd (NH_{3})_{4}^{2+} dx)$$

$$S = 6 \cdot 5 \times 10^{5} M$$

### 1. Calculate the $[H^+]$ and the pH of a 0.25M solution of HNO<sub>3</sub>.

HNO3 -> H+ +NO3 (ag) (strong acid) 0.25M 0.25M 0.25M PH = -log[H+]= -log [0.25] = [0.602

2. Calculate the pH of a solution prepared by dissolving 2.08g KOH in enough water to make 500mL solution.

 $Molarity of KOH = \frac{2.08 g KOH}{6.000 cl} \times \frac{1 mol KCH}{56.1 g KOH} = 0.0742 M$ pOH = -log [OH-] = -log (0.0742) = 1.130 PH = 14.000- 1:130 = [12.870

- 3. A solution of HClO<sub>2</sub> is prepared by dissolving 1.369g HClO<sub>2</sub> in enough water to make 100mL of solution. The pH of the resulting solution is 1.36.
- a) Write the reaction for ionization of  $HClO_2$ .

$$H(10_2lag) \Longrightarrow H^+(ag) + (10_2^-lag)$$

**b)** Write the expression for  $K_a$ .

$$K_{a} = \frac{[H^{+}][[U]_{2}]}{[HU_{2}]}$$

3. A solution of  $HClO_2$  is prepared by dissolving 1.369g  $HClO_2$  in enough water to make 100mL of solution. The pH of the resulting solution is 1.36.

c) Calculate K<sub>a</sub>.

Solur: molar mass of HC102 = 68.46 g/mol mass of HC102 = 68:46g 1.369g  $moles = 1.369 g \times \frac{lmol}{68.46 g/mol} = 0.02000 mol$  $Concentration (mol/L) = \frac{0.02000}{0.000} = 0.2000M$   $EHCIO_2 J_0 = 0.2000M$  $PH = -\log EH^{\dagger}J \implies EH^{\dagger}J = 10^{-1.36} = 0.044M$  $HC10_2 \rightleftharpoons H^+ + C10_2^-$ E@Jo 0.2000 0 0 Change -0.044 +0.044 +0.044 []eq 0.156 0.044 0.044  $K_a = \frac{EH^+ J E C O_2^{-J}}{EH C O_2 J} = \frac{E 0.044 J E 0.044 J}{0.156}$  $K_{a} = 0.012$ 

4. A 0.300M aqueous solution of Benzoic acid  $(HC_7H_5O_2)$  is 1.47% ionized. a) Write the equation for the ionization.

$$HC_{7}H_{5}O_{2}(aq) = H^{\dagger}(aq) + C_{7}H_{5}O_{2}^{-}(aq)$$

#### b)K<sub>a</sub> expression for the ionization.

 $= \frac{[H^{+}][C_{7}H_{5}O_{2}]}{[HC_{7}H_{5}O_{2}]}$ 

### 4. A 0.300M aqueous solution of Benzoic acid ( $HC_7H_5O_2$ ) is 1.47% ionized. c) Calculate K<sub>a</sub> for the ionization.

$$\frac{\text{Sotu: } 1.47.}{\text{Imod Benzoic acid = Imod H^+ = Imod Benzoic acid = Imod H^+ = Imod Benzoate ion
$$\Delta [HC_7H_5O_2] = \Delta [H^+] = \Delta [C_7H_5O_2] = 0.0044/M$$

$$\frac{\text{Table: } HC_7H_5O_2 = H^+ + C_7H_5O_2^-}{\text{I}_0 0.3000 0} = 0.0044/M$$

$$\frac{\text{Table: } HC_7H_5O_2 = H^+ + C_7H_5O_2^-}{\text{I}_0 0.3000 0} = 0.0044/M$$

$$\frac{\text{Table: } HC_7H_5O_2 = H^+ + C_7H_5O_2^-}{\text{I}_0 0.3000 0} = 0.0044/M$$

$$\frac{\text{Table: } HC_7H_5O_2 = H^+ + C_7H_5O_2^-}{\text{I}_0 0.3000 0} = 0.0044/M$$

$$\frac{\text{Table: } HC_7H_5O_2 = H^+ + C_7H_5O_2^-}{\text{I}_0 0.3000 0} = 0.0044/M$$$$

5. Hydroxylamine ionizes in water according to the rxn.

HONH<sub>2</sub>(aq) + H<sub>2</sub>O  $\longrightarrow$  OH<sup>-</sup>(aq) + HONH<sub>3</sub><sup>+</sup>(aq)  $K_b = 9.1 \times 10^{-9}$ Calculate the [OH-] and pH of one-liter solution containing 0.20M Hydroxylamine.

Setu:  
HONH<sub>2</sub> + H<sub>2</sub>O = OH<sup>-</sup> + HONH<sub>3</sub> +  
LOJ 0.2 + z + z  
Charge -z z z z  
L Jeq 0.2-z  

$$K_{b} = \frac{OH^{-} J L HONH_{3}^{+} J}{LHONH_{2} J}$$
  
 $9.1 \times 10^{-9} = \frac{z^{2}}{0.2}$   
 $2 = 4.3 \times 10^{-5} = \frac{[OH^{-}]}{2}$   
 $pOH = -log LOH^{-} J = -log [4.3 x 10^{-5}] = 4.37$   
 $pH = 14 - pOH = 14 - 4.37 = \sqrt{9.63}$ 

6. Consider Sodium hypochlorite (NaOCl), household bleach. The OCl<sup>-</sup> has K<sub>b</sub> = 3.6 X 10<sup>-7</sup>. A solution is prepared by dissolving 12.0g of NaOCl (m.m= 74.45g/mol) is enough water to make 835mL of solution. a) What is the pH of the solution?

$$\widehat{(A)} = \widehat{(A)} = \widehat$$

6. Consider Sodium hypochlorite (NaOCl), household bleach. The OCl<sup>-</sup> has  $K_b = 3.6 \text{ X}$ 10<sup>-7</sup>. A solution is prepared by dissolving 12.0g of NaOCl (m.m= 74.45g/mol) is enough water to make 835mL of solution.

b) Household bleach is 5.25% NaOCl by mass. Assuming that its density is 1.00g/mL is household bleach more alkaline than the prepared solution?

(b) Assuming loog of bleach; we have 
$$5.25g$$
 MaOCI in  $100 \text{ mL}$  solution.  
 $[00 \text{ mL} \text{ solution}$ .  
 $[NaOCI] = [OCI^{-}] = \frac{5.25g}{0.100L} \times \frac{1 \text{ mod}}{74.45g} = 0.705M$   
 $K_{b} = \frac{[HOCI][OH^{-}]}{[OCI^{-}]} \Rightarrow \chi = 5.0 \times 10^{-9}$   
 $K_{b} = \frac{[HOCI][OH^{-}]}{[OCI^{-}]} \Rightarrow \chi = 5.0 \times 10^{-9}$   
 $K_{a} = \frac{[H^{+}] = \frac{1 \times 10^{-19}}{5 \times 10^{-9}} = 2.0 \times 10^{-11} \Rightarrow ]PH = 10.70$   
 $BLEACH 15 MORE ALKALING$ 

7. Suppose that you want to prepare an  $H_2PO_4^-$  -  $HPO_4^{2-}$  buffer with a pH of 7. Taking the K<sub>a</sub> of  $H_2PO_4^-$  to be 6.2X10<sup>-8</sup>, how many grams of NaH<sub>2</sub>PO<sub>4</sub> and Na<sub>2</sub>HPO<sub>4</sub> should you add to water to make this buffer?

Solu<sup>m</sup>: 
$$[EH^{+}] = 10^{-7} = 1.0 \times 10^{-7} M$$
  
 $[EH_2 POY \implies H^{+}(aq) + HPOY^{2-}(aq)]$   
 $Ka = \frac{EH^{+}J}{EH_2POY^{-J}}$   
 $[EH_2POY^{-J}] = \frac{EH^{+}J}{Ka} = \frac{1.0 \times 10^{-7}}{6.2 \times 10^{-8}} = 1.6$   
For every mole of weak base (HPOY^{2-}], we need  
 $1.6 \mod g$  weak acid (H2POY^{-})  
mass of Na<sub>2</sub>HPOY = 1 mol ×  $\frac{142g}{1mol} = 1.4 \times 10^{2}g$   
:: We need  $1.6 \mod weak$  acid, the we also need  
 $1.6 \mod Na_{H_2}POY$ .  
mass NaH<sub>2</sub>POY = 1.6 mol ×  $\frac{120g}{1mol} = 1.9 \times 10^{2}g$   
For buffer of  $PH = 7 \Rightarrow$  Dissolve  $1.4 \times 10^{2}g$  Na<sub>2</sub>HPOY  
and  $1.9 \times 10^{2}g$  of NaH<sub>2</sub>POY.  
Dosent matter how much water you use.