

Agenda

01

Introduction Who am I? What's on the exam? 02

Review Work through some practice problems together.

03

0

Questions

Are there any other topics you would like to discuss?

04

Note Sheet

Definitions, formulas, and topics to include on your note sheet.

05 Conclusion

Thank you for attending the review session and good luck on the exam!

MATH 1060Q Final Exam

Jan

S S

1/12

Topics since Exam II include...

Section 4.3	Solving triangles with Soh Cah Toa, using trigonometric identities
Section 4.4	Evaluating trigonometric functions of any angle, using reference angles to evaluate trigonometric functions
Section 4.5	Sketching sine and cosine functions, describing transformations of sine and cosine, finding amplitude, period, phase shift, and vertical shift
Section 4.6	Recognizing graphs of secant, cosecant, tangent, and cotangent, solving trigonometric equations
Section 4.7	Definition, domain, and range of inverse trigonometric functions, evaluating inverse trigonometric functions, compositions of inverse trigonometric functions
Section 4.8	Solving triangles, angle of elevation
Section 5.1	Simplifying trigonometric equations
Section 5.3	Solving trigonometric functions

Find the exact values of the six trigonometric functions of the angle θ shown in the figure.

Use trigonometric identities to transform the left side of the equation into the right side $(0 < \theta < 2\pi)$.

49. $\tan \alpha \cos \alpha = \sin \alpha$

y=h'nx

Find the exact values of the six trigonometric functions of θ with the given constraint.

Evaluate the sin, cosine, and tangent of the angle without using a calculator.

Function Value 23. $\tan \theta = -\frac{15}{8}$	Constraint $\sin \theta > 0$	61. $\frac{5\pi}{4}$

y=h'nx

g is related to a parent function f(x) = sin(x) or f(x) = cos(x).

$$g(x) = \cos(x - \pi) + 2$$

(a) Describe the sequence of transformations from f to g.

(b) Sketch the graph of g.

(c) Use function notation to write g in terms of f.

y-sinx

Evaluate the expression without using a calculator.

11.
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

Use the properties of inverse trigonometric functions to evaluate the expression.

49.
$$\cos[\arccos(-0.1)]$$

<u>y-</u>1'nx

$$\frac{2\sqrt{y^2-z^3}}{a}$$

$$\frac{d(\omega)}{a}$$

$$\frac{d(\omega)}{a$$

 $f(-a) = \frac{1}{2}\cos(2x - \pi/3) + 1$

 $\int dy \int fdx + \int dy \int \frac{1}{\sqrt{2}} dy$

Note Sheet

Hello! If you are looking for information to write on your note sheet, here a few topics that might be worth including.

<u>y= cos 2x2 y 18</u>

Trig Identities

Reciprocal

$sin\theta = \frac{1}{csc\theta}$	$cos\theta = \frac{1}{sec\theta}$	$tan\theta = \frac{1}{cot\theta}$
$csc\theta = \frac{1}{sin\theta}$	$sec\theta = \frac{1}{sin\theta}$	$cot\theta = \frac{1}{tan\theta}$

Even/Odd

$ sin(-\theta) \\ = -sin\theta $	$\cos(-\theta) = \cos\theta$	$\tan(-\theta) = -tan\theta$
$csc(-\theta)$ = $-csc\theta$	$\sec(-\theta) = \sec\theta$	$\cot(-\theta) = -\cot\theta$

Pythagorean

 $sin^2\theta + cos^2\theta = 1$

 $1 + tan^2\theta = sec^2\theta$

 $1 + cot^2\theta = csc^2\theta$

Quotient

cosθ

sinθ

 $cot\theta =$

 $tan\theta = \frac{sin\theta}{cos\theta}$

Cofunction

$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$	$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$
$\csc\left(\frac{\pi}{2} - \theta\right) = sec\theta$	$\sec\left(\frac{\pi}{2}-\theta\right)=\csc\theta$
$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$	$\cot\left(\frac{\pi}{2} - \theta\right) = tan\theta$

Right Triangle Trigonometry

V: Z=

X =

Trig Functions of Any Angle

V: Z= X=

Trig Function Graphs

Domain: $(-\infty, \infty)$ Range: [-1, 1]Period: 2π

V: Z=

X =

Domain: all $x \neq \frac{\pi}{2} + n\pi$ Range: $(-\infty, \infty)$ Period: π

Domain: all $x \neq n\pi$ Range: $(-\infty, \infty)$ Period: π

 $= \cos x$

Domain: all $x \neq n\pi$ Range: $(-\infty, -1] \cup [1, \infty)$ Period: 2π

Domain: all $x \neq \frac{\pi}{2} + n\pi$ Range: $(-\infty, -1] \cup [1, \infty)$ Period: 2π

Amplitude = |a|

Ex.
$$y = \frac{1}{2}cosx$$

Maximum	Intercept	Minimum	Intercept	Maximum
$(0,\frac{1}{2})$	$(\frac{\pi}{2},0)$	$(\pi, -\frac{1}{2})$	$(\frac{3\pi}{2},0)$	$(2\pi.\frac{1}{2})$

$$Period = \frac{2\pi}{b}$$

$$Period = \frac{2\pi}{b}$$

Ex.
$$y = sin \frac{1}{2}x$$

Intercept	Maximum	Intercept	Minimum	Intercept
(0,0)	(π, 1)	(2π, 0)	(3 <i>π</i> ,−1)	(4π.0)

dy =

2-23

Inverse Trig Functions

Function	Domain	Range
y = arcsinx if and only if siny = x	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
y = arccosx if and only if $cosy = x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = arctanx \text{ if and only if} \\ tany = x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

$$\frac{|f(x+x)|}{2} dy = \frac{1}{2}$$
Inverse Trig Properties
$$\frac{|f(x+x)|}{2} dy = \frac{1}{2}$$
If $-1 \le x \le 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, then $\sin(\arccos(x)) = x$ and $\arcsin(\sin y) = y$.
If $-1 \le x \le 1$ and $0 \le y \le \pi$, then $\cos(\arccos(x)) = x$ and $\arccos(\cos y) = y$.
If x is a real number and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, then $\tan(\arctan(x)) = x$ and $\arctan(\tan y) = y$.

H

Thanks!

Do you have any questions?

katherine.guarco@uconn.edu 860 486 1961 qcenter.uconn.edu

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u> and infographics & images by <u>Freepik</u> Please keep this slide for attribution

2142-23

0

7