1125 Review Session

Q center

Exam 5

1. Consider the following reaction: $BF_3(g) + NH_3(g) \rightarrow BF_3NH_3(g)$

The reaction is first order in BF3 and first order in NH3. Write the rate expression for the reaction:

2. At a certain temperature, 0.860 mol SO3 is placed in a 3.00 L container. $2SO_3(g) \rightleftharpoons 2SO_2(g)+O_2(g)$ At equilibrium, 0.140 mol O_2 is present. Calculate Kc.

3. Calculate the equilibrium constant for the reaction:

 $Q_{(g)}$ + $X_{(g)}$ \Rightarrow $2M_{(g)}$ + $N_{(g)}$

Given that:

$$\begin{array}{ll} M_{(g)}\rightleftharpoons Z_{(g)} & \mbox{K=3.33} \\ 6R_{(g)}\rightleftharpoons 2N_{(g)}{+}4Z_{(g)} & \mbox{K=0.463} \\ 3X_{(g)}{+}3Q_{(g)}{\rightleftharpoons}9R_{(g)} & \mbox{K=11.7} \end{array}$$

4. Which of the following will increase the concentration of reactants for the following reaction:

$$CH_{3}NH_{2(aq)}+H_{2}O_{9l0}\rightleftharpoons CH_{3}NH_{3(aq)}^{*}+OH_{(aq)}^{-}$$

$$\Delta H^{o}_{rxn}=103 \text{ kJ/mol}$$

- a. Adding more KOH
- b. Adding KBr
- c. Increasing the temperature
- d. Adding CH₃NH₃Br
- e. Adding HBr
- 5. Consider this equilibrium reaction:

$$Br_{2(g)}+Cl_{2(g)} \rightleftharpoons 2BrCl_{(g)}$$
 $K_c=7.0$

If the composition of the reaction mixture at 400 L is [BrCl]=0.00581 M, $[Br_2]=0.00216 \text{ M}$, and $[Cl_2]=0.000396$, predict to what side the reaction shifts to get to the equilibrium.

- 6. For the following reactions determine whether the forward or reverse reaction is favored:
 - a. $Ag_2CrO_{4(s)} \rightleftharpoons 2Ag^{+}_{(aq)} + CrO_4^{2^-}_{(aq)}$ K=1.1x10⁻¹²
 - b. $2NO_{(g)}+O_{2(g)} \rightleftharpoons 2NO_{2(g)}$ K=2.5x10¹⁰
 - c. $HCN_{(aq)} + OH_{(aq)}^{-} \rightleftharpoons CN_{(aq)}^{-} + H_{(aq)}^{+}$ K=5.1x10⁻⁸
- 7. At 25 °C gaseous I_2 and Cl_2 react to form ICl.

$$I_{2(g)} + Cl_{2(g)} \leftrightarrows 2ICl_{(g)} \qquad K_p = 9.1$$

Suppose that a sealed container initially contains 0.250 atm of I_2 and 0.250 M of Cl_2 . Calculate the equilibrium partial pressures of I_2 , Cl_2 and ICl at this temperature.

8. SOCl2 dissociates into SO2 and Cl2 via the following reaction:

$$SOCl_{2(g)} \leftrightarrows SO_{2(g)} + Cl_{2(g)}$$
 $K_p = 1.23x10^{-6}$

At 500 K. Calculate $K_{\rm c}$ for this reaction at 500 K